Approximation by Baskakov quasi-interpolants

نویسنده

  • Paul Sablonnière
چکیده

Baskakov operators and their inverses can be expressed as linear differential operators on polynomials. Recurrence relations are given for the computation of these coefficients. They allow the construction of the associated Baskakov quasi-interpolants (abbr. QIs). Then asymptotic results are provided for the determination of the convergence orders of these new quasi-interpolants. Finally some results on the computation of these QIs and the numerical approximation of functions defined on the positive real half-line are illustrated by some numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An identity for a general class of approximation operators

We prove an identity for basis functions of a general family of positive linear operators. It covers as special cases the Bernstein, Szász–Mirakjan and Baskakov operators. A corollary of our result can be considered a pointwise orthogonality relation. The Bernstein case is the univariate case of a remarkable identity which recently was presented by Jetter and Stöckler. As an application we give...

متن کامل

Approximation Order without Quasi-Interpolants

In the study of approximation order, particularly in a multivariable setting, quasi-interpolants have played a major role. This report points out some limitations of quasi-interpolants and describes some recent results on approximation order obtained without the benefit of the quasi-interpolant idea. §1. Approximation Order In most general terms, “approximation order” is defined as follows. Def...

متن کامل

Quadratic spline quasi-interpolants on Powell-Sabin partitions

In this paper we address the problem of constructing quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-interpolants of optimal approximation order are proposed and numerical tests are presented.

متن کامل

Effortless quasi-interpolation in hierarchical spaces

We present a general and simple procedure to construct quasi-interpolants in hierarchical spaces, which are composed of a hierarchy of nested spaces. The hierarchical quasi-interpolants are described in terms of the truncated hierarchical basis. Once for each level in the hierarchy a quasi-interpolant is selected in the corresponding space, the hierarchical quasi-interpolants are obtained witho...

متن کامل

Near minimally normed spline quasi-interpolants on uniform partitions

Spline quasi-interpolants are local approximating operators for functions or discrete data. We consider the construction of discrete and integral spline quasi-interpolants on uniform partitions of the real line having small infinite norms. We call them near minimally normed quasi-interpolants: they are exact on polynomial spaces and minimize a simple upper bound of their infinite norms. We give...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013